Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bing-Xin Liu ${ }^{\text {a }}$ and Duan-Jun Xu ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Shanghai University, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's
Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.081$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A dimeric manganese(II) complex bridged by 4-aminobenzoate

The dimeric $\mathrm{Mn}^{\text {II }}$ title complex, di- $\mu-4$-aminobenzoato-bis[(4aminobenzoato)($2,2^{\prime}$-diamino-4, 4^{\prime}-bithiazole)manganese(II)] dihydrate, $\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, bridged by aminobenzoate anions, is located on an inversion center. Each $\mathrm{Mn}^{\mathrm{II}}$ atom is coordinated by one diaminobithiazole and three aminobenzoate ligands with a distorted octahedral geometry.

Comment

As part of an ongoing investigation on the nature of $\pi-\pi$ stacking in metal complexes (Fu et al., 2005), the title $\mathrm{Mn}^{\mathrm{II}}$ complex, (I), was recently prepared and its X-ray crystal structure is presented here.

(I)

The dimeric molecule of (I) is located on an inversion center (Fig. 1). Each $\mathrm{Mn}^{\mathrm{II}}$ atom is coordinated by three aminobenzoate anions and one diaminobithiazole ligand, in a distorted octahedral geometry (Table 1). The diaminobithiazole chelating the $\mathrm{Mn}^{\mathrm{II}}$ atom displays a nearly planar configuration, with a dihedral angle of $3.75(15)^{\circ}$ between the two thiazole mean planes; this differs from the twisted configuration [dihedral angle $=20.02(8)^{\circ}$] found in a diaminobithiazole complex of $\mathrm{Co}^{\text {II }}$ reported previously (Liu \& Xu, 2005).

While the C 11 carboxyl group chelates to the $\mathrm{Mn}^{\mathrm{II}}$ atom, the C22 carboxyl bridges $\mathrm{Mn}^{\mathrm{II}}$ atoms to form the dimeric complex molecule. Although the larger $\mathrm{Mn}-\mathrm{O} 3-\mathrm{C} 21$ angle of $157.73(14)^{\circ}$ implies poor overlap between atomic orbitals of the Mn and O 3 atoms, the shorter $\mathrm{Mn}-\mathrm{O} 3$ bond distance (Table 1) shows the normal bonding interaction between them. This is consistent with the situation found in an $\mathrm{Mn}^{\text {II }}$ complex with salicylate ($\mathrm{Su} \& \mathrm{Xu}, 2005$) and in a $\mathrm{Mn}^{\mathrm{II}}$ complex with benzenedicarboxylate (Nie et al., 2001), and clearly

Received 12 September 2005 Accepted 13 September 2005 Online 17 September 2005

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds [symmetry code: (i) $2-x, 1-y, 1-z$].

Figure 2
The packing in (I).
suggests a significant electrostatic contribution to the $\mathrm{Mn}-\mathrm{O}$ bond.

As shown in Fig. 2, a partially overlapping arrangement of parallel benzene rings, related by an inversion center, occurs in the crystal structure of (I), but the face-to-face separation of 4.0068 (13) \AA shows that there is no $\pi-\pi$ stacking between aminobenzoate ligands. An extensive hydrogen-bonding network occurs in the crystal structure of (I) (Table 2).

Experimental

An aqueous solution (20 ml) containing diaminobithiazole (1 mmol) and $\mathrm{MnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ was mixed with another aqueous solution $(10 \mathrm{ml})$ of 4 -aminobenzoic acid (4 mmol) and $\mathrm{NaOH}(4 \mathrm{mmol})$. The mixture was refluxed for 10 h . After cooling to room temperature, the solution was filtered. Yellow single crystals of (I) were obtained from the filtrate after 15 d .

Crystal data

$\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{4}\right] \cdot-$	$Z=1$
$2 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.597 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1086.96$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 4228
$a=9.1429(8) \AA$	reflections
$b=10.6796() \AA$$\AA$ $c=12.0826(12) \AA$	$\theta=2.2-24.0^{\circ}$
$\alpha=89.916(2)^{\circ}$	$\mu=0.82 \mathrm{~mm}^{-1}$
$\beta=74.203(2)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=84.889(2)^{\circ}$	Prism, yellow
$V=113039(18) \AA^{\circ}$	$0.32 \times 0.28 \times 0.18 \mathrm{~mm}$

$$
V=1130.39(18) \AA^{3}
$$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.775, T_{\text {max }}=0.862$
5976 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.081$
$S=1.07$
3923 reflections
307 parameters
H-atom parameters constrained

Table 1

Selected bond lengths (\AA).

$\mathrm{Mn}-\mathrm{O} 1$	$2.2053(14)$	$\mathrm{Mn}-\mathrm{O} 4^{\mathrm{i}}$	$2.1532(13)$
$\mathrm{Mn}-\mathrm{O} 2$	$2.3233(15)$	$\mathrm{Mn}-\mathrm{N} 1$	$2.3154(15)$
$\mathrm{Mn}-\mathrm{O} 3$	$2.1361(13)$	$\mathrm{Mn}-\mathrm{N} 3$	$2.2321(16)$

Symmetry code: (i) $-x+2,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.90	1.91	$2.774(2)$	161
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{~N}^{6 i}$	0.97	1.96	$2.923(3)$	168
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	0.88	2.23	$3.011(2)$	148
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots 4^{\text {iii }}$	0.90	2.15	$3.006(2)$	159
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 3$	0.86	2.16	$2.967(2)$	157
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1 W^{\text {iv }}$	0.91	2.09	$2.940(2)$	155
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1 W^{v}$	0.94	2.12	$3.034(2)$	165
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{~N} 2^{\mathrm{v}}$	0.98	2.38	$3.310(3)$	157
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2^{\text {vi }}$	0.92	2.47	$3.287(2)$	149
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{\text {vii }}$	0.93	2.49	$3.418(3)$	172
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{O} 1$	0.93	2.46	$3.353(2)$	162

Symmetry codes: (ii) $-x+1,-y+1,-z+2$; (iii) $x, y-1, z$; (iv) $-x+1,-y+1,-z+1$; (v) $-x+1,-y,-z+2$; (vi) $-x+2,-y+1,-z+2$; (vii) $x, y, z-1$.

H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and included in the final cycles of refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Other H atoms were located in a difference Fourier map and refined as riding in their asfound relative positions with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (carrier).

Data collection and cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

metal-organic papers

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Fu, X.-D., Lin, D.-D. \& Xu, D.-J. (2005). Acta Cryst. E61, m1823-m1825.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, J.-G. \& Xu, D.-J. (2005). J. Coord. Chem. pp. 735-740.
Nie, J.-J., Liu, L.-J., Luo, Y. \& Xu, D.-J. (2001). J. Coord. Chem. 53, 365-371.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Su, J.-R. \& Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.

